
MACI Security Audit
By Kyle Charbonnet (PSE Security), Yufei Li (PSE Security)

July, 2024

Table of Contents

1. Overview
a. Executive Summary
b. Background
c. Coverage
d. General Analysis

2. Findings
a. Major

i. Finding 1 - [M1]
ii. Finding 2 - [M2]

b. Recommendation
i. Finding 3 - [R1]
ii. Finding 4 - [R2]

c. Gas Optimization
i. Finding 5 - [G1]

d. Fix Log
e. Vulnerability Classifications

Overview

Executive Summary
Since the last audit, MACI code has been updated that addressed issues found in the last audit,
removed some functionalities, modularized certain parts of the code, as well as added some
new functionalities.

These changes were audited with a focus on the smart contracts, typescript core, and Circom
circuits. The contracts followed solidity best practices with great documentation. Only minor
issues and gas optimization were found, while one major issue was found in an open PR, which
was suggested to be reviewed as well. All issues have been addressed. Overall, the MACI
codebase is complex, yet well documented and thoroughly reviewed.

Background
MACI is a zero-knowledge protocol that acts as a collusion resistant voting platform. The
zero-knowledge proof generation and vote tallying process is all done by a single actor known
as the coordinator. However, the coordinator cannot censor individual votes or tamper with the
results. The voting process deters buying votes by allowing voters to secretly change their
votes. Not even the voters themselves can prove to a briber who they voted for - provided the
coordinator does not reveal their secret key. This functionality enables a wide range of use
cases where vote bribing is popular.

The three main components of MACI are the smart contracts, the core typescript, and the
Circom circuits. The smart contracts manage the voting data and zero-knowledge proof
validation on-chain so that everyone can verify the voting inputs. The core typescript provides a
simple interface for users to publish votes on-chain and so the coordinator can tally the voting
results. The circuits are used to generate zero-knowledge proofs that the votes were counted
correctly. The proof can then be verified through a verifier smart contract on-chain.

Coverage
Github Repo: https://github.com/privacy-scaling-explorations/maci
Commit Hash: 14e89baea1ede9bc9bad79fafb5c362d6a6a81e9
Branch: chore/audit-v2.0.0
Documentation: https://maci.pse.dev/docs/introduction/
Changes since last audit:
https://www.notion.so/pse-team/MACI-v2-0-0-Audit-fbd726ed4b704402a4dca5536921d4e9
The open PR that optimizes processMessage circuit:
https://github.com/privacy-scaling-explorations/maci/pull/1644/files
The previous version of the verifier supported only a single parameter, necessitating the use of
packed values and SHA256 input hashes. With the latest version, which supports multiple input
values, and due to reduced gas costs on-chain, input values are now directly utilized:
https://github.com/privacy-scaling-explorations/maci/pull/1700

Code in maci/contracts, scripts in maci/core, maci/crypto, maci/cli, maci/domainobjs, and circuits
in maci/circuits were reviewed.

General Analysis

Category Evaluation

Access Control Strong. Access is limited as intended, mainly to the coordinator

Launch Risk Strong. MACI does not manage assets. Additionally many dApps
built using MACI will deploy their own MACI contract. They should

https://maci.pse.dev/docs/introduction/
https://www.notion.so/pse-team/MACI-v2-0-0-Audit-fbd726ed4b704402a4dca5536921d4e9
https://github.com/privacy-scaling-explorations/maci/pull/1644/files
https://github.com/privacy-scaling-explorations/maci/pull/1700

consider launch controls if necessary.

Code Quality Strong. Code follows best practices for solidity, typescript, and
Circom. No unnecessary use of assembly. No confusing
variable/function names. Good use of interfaces and inheritance.

Decentralization Moderate. Coordinator can choose to never publish the voting
results, thus halting the vote. However, they are not able to
censor individual votes or publish incorrect voting results.

Events Strong. Events are emitted after every important function call.

Dummy Proof Strong. Contract function names are clear in their intent and hard
to misuse. The code makes this complex protocol as simple as
can be.

Complexity Moderate. Contracts are short and simple. Typescript is easy to
read and understand. However, the circuit logic is non-trivial and
can be difficult to reason through.

Testing Strong. Strong and well written unit and integration tests.

Documentation Strong. NatSpec comments for all functions and good
documentation on the website.

Cryptography Strong. Follows best practices and utilizes SNARK safe
cryptography when needed.

ZK Circuits Moderate. The circuits are quite complex and 2 critical bugs were
found within them.

Findings

Findings On New Commit - July 2024

Major

[M1] *from the open PR instead of the audit ready codebase

Misuse of computedIsStateLeafIndexValid instead of
computedIsVoteOptionIndexValid
Location

https://github.com/privacy-scaling-explorations/maci/blob/52c9711929ee28f7cf5395f18629d6a1
80714474/circuits/circom/core/qv/processMessages.circom#L457

Description

var cmdVoteOptionIndexMux = Mux1()([0, cmdVoteOptionIndex],
computedIsStateLeafIndexValid);

cmdVoteOptionIndexMux’s value should be based on computedIsVoteOptionIndexValid
not computedIsStateLeafIndexValid. With this misuse, presumably cmdVoteOptionIndex
larger than maxVoteOptions will be viewed as valid, thus leading to unforeseen consequences
down the line.

Implemented Fix
Replace computedIsStateLeafIndexValid with computedIsVoteOptionIndexValid

[M2] Missing coordPubKey checking while processing messages can
result in coordinator censoring all or selected batches
Location
The code below were removed from the new commit:
https://github.com/privacy-scaling-explorations/maci/blob/be7a6598b7aeab2e11717bea509c697
d61b556db/circuits/circom/core/non-qv/processMessages.circom#L135-L149
https://github.com/privacy-scaling-explorations/maci/blob/be7a6598b7aeab2e11717bea509c697
d61b556db/contracts/contracts/MessageProcessor.sol#L246

Description
The previous version of the verifier supported only a single parameter, necessitating the use of
packed values and SHA256 input hashes. With the latest version, which supports multiple input
values, and due to reduced gas costs on-chain, input values are now directly utilized. Comparing the
input variables between two commit:
Previous:

// pack the values
uint256 packedVals = genProcessMessagesPackedVals(
_currentMessageBatchIndex,
_numSignUps,
_numMessages,
_messageTreeSubDepth,
_voteOptionTreeDepth
);

(uint256 deployTime, uint256 duration) =
poll.getDeployTimeAndDuration();

https://github.com/privacy-scaling-explorations/maci/blob/52c9711929ee28f7cf5395f18629d6a180714474/circuits/circom/core/qv/processMessages.circom#L457
https://github.com/privacy-scaling-explorations/maci/blob/52c9711929ee28f7cf5395f18629d6a180714474/circuits/circom/core/qv/processMessages.circom#L457
https://github.com/privacy-scaling-explorations/maci/blob/be7a6598b7aeab2e11717bea509c697d61b556db/circuits/circom/core/non-qv/processMessages.circom#L135-L149
https://github.com/privacy-scaling-explorations/maci/blob/be7a6598b7aeab2e11717bea509c697d61b556db/circuits/circom/core/non-qv/processMessages.circom#L135-L149
https://github.com/privacy-scaling-explorations/maci/blob/be7a6598b7aeab2e11717bea509c697d61b556db/contracts/contracts/MessageProcessor.sol#L246
https://github.com/privacy-scaling-explorations/maci/blob/be7a6598b7aeab2e11717bea509c697d61b556db/contracts/contracts/MessageProcessor.sol#L246

// generate the circuit only public input
uint256[] memory input = new uint256[](7);
input[0] = packedVals;
input[1] = coordinatorPubKeyHash;
input[2] = _messageRoot;
input[3] = _currentSbCommitment;
input[4] = _newSbCommitment;
input[5] = deployTime + duration;
input[6] = actualStateTreeDepth;
inputHash = sha256Hash(input);

}

and the new version:

publicInputs = new uint256[](8);
publicInputs[0] = numSignUps;
publicInputs[1] = deployTime + duration;
publicInputs[2] = messageAq.getMainRoot(messageTreeDepth);
publicInputs[3] = poll.actualStateTreeDepth();
publicInputs[4] = batchEndIndex;
publicInputs[5] = _currentMessageBatchIndex;
publicInputs[6] = (sbCommitment == 0 ? poll.currentSbCommitment() :

sbCommitment);
publicInputs[7] = _newSbCommitment;

We see coordinatorPubKeyHash is missing. Because the coordinator pub key hash is not
part of the public inputs anymore, the coordinator can run the circuit with an invalid
private key (not associated with the public key on chain) and have a tally of 0 validated
successfully - or even worse, he can pass the wrong private key for some batches, and
the correct one for other batches.

The fix is to have the pub key hash as public input, still accept the private key as private input,
derive public key from private, hash it and check that it matches the public input on-chain.

Implemented fix

[R1] Optimization: Extra Code
Location
https://github.com/privacy-scaling-explorations/maci/blob/14e89baea1ede9bc9bad79fafb5c362d
6a6a81e9/circuits/circom/utils/messageToCommand.circom#L48-L57

Description

https://github.com/privacy-scaling-explorations/maci/blob/14e89baea1ede9bc9bad79fafb5c362d6a6a81e9/circuits/circom/utils/messageToCommand.circom#L48-L57
https://github.com/privacy-scaling-explorations/maci/blob/14e89baea1ede9bc9bad79fafb5c362d6a6a81e9/circuits/circom/utils/messageToCommand.circom#L48-L57

There are multiple instances, where in .circom files, arrays can be used directly in assignment,
instead of assigning each element in a loop.

As an example, the following block

var computedDecryptor[DECRYPTED_LENGTH] =
PoseidonDecryptWithoutCheck(MSG_LENGTH)(

[
message[0], message[1], message[2], message[3],
message[4], message[5], message[6], message[7],
message[8], message[9]

],
0,
computedEcdh

);

can be simplified to:

var computedDecryptor[DECRYPTED_LENGTH] =
PoseidonDecryptWithoutCheck(MSG_LENGTH)(

message,
0,
computedEcdh

);

Implemented fix
https://github.com/privacy-scaling-explorations/maci/blob/ad04340972f3d35a8d4915227d15c55
02af7fe63/circuits/circom/utils/messageToCommand.circom#L48-L52

[R2] Remove dead code

Location
https://github.com/privacy-scaling-explorations/maci/blob/14e89baea1ede9bc9bad79fafb5c362d
6a6a81e9/contracts/contracts/Tally.sol#L254-L257

Description
`tally` is defined and assigned in the function `verifySpentVoiceCredits`, but never used.

Implemented fix
https://github.com/privacy-scaling-explorations/maci/blob/ad04340972f3d35a8d4915227d15c55
02af7fe63/contracts/contracts/Tally.sol#L257

https://github.com/privacy-scaling-explorations/maci/blob/ad04340972f3d35a8d4915227d15c5502af7fe63/circuits/circom/utils/messageToCommand.circom#L48-L52
https://github.com/privacy-scaling-explorations/maci/blob/ad04340972f3d35a8d4915227d15c5502af7fe63/circuits/circom/utils/messageToCommand.circom#L48-L52
https://github.com/privacy-scaling-explorations/maci/blob/14e89baea1ede9bc9bad79fafb5c362d6a6a81e9/contracts/contracts/Tally.sol#L254-L257
https://github.com/privacy-scaling-explorations/maci/blob/14e89baea1ede9bc9bad79fafb5c362d6a6a81e9/contracts/contracts/Tally.sol#L254-L257
https://github.com/privacy-scaling-explorations/maci/blob/ad04340972f3d35a8d4915227d15c5502af7fe63/contracts/contracts/Tally.sol#L257
https://github.com/privacy-scaling-explorations/maci/blob/ad04340972f3d35a8d4915227d15c5502af7fe63/contracts/contracts/Tally.sol#L257

[G1] Gas Optimization
Location
https://github.com/privacy-scaling-explorations/maci/blob/14e89baea1ede9bc9bad79fafb5c362d
6a6a81e9/contracts/contracts/trees/LazyIMT.sol#L156

Description
The code below is calculating exp at each step, which is quite gas heavy,

while (uint40(2) ** uint40(depth) < numberOfLeaves) {
depth++;

}

Right shift is much more gas efficient for this scenario:

while ((numberOfLeaves >> depth) > 1) {
depth++;

}

Fix Log

Issue Severity Status

[M1] Major

[N1] Minor

[R1] Recommendation Fixed.
https://github.com/privacy-scaling-explorations/maci/blob/ad04
340972f3d35a8d4915227d15c5502af7fe63/circuits/circom/utils
/messageToCommand.circom#L48-L52

[R2] Recommendation Fixed.
https://github.com/privacy-scaling-explorations/maci/blob/ad04
340972f3d35a8d4915227d15c5502af7fe63/contracts/contracts
/Tally.sol#L257

[G1] Recommendation

https://github.com/privacy-scaling-explorations/maci/blob/14e89baea1ede9bc9bad79fafb5c362d6a6a81e9/contracts/contracts/trees/LazyIMT.sol#L156
https://github.com/privacy-scaling-explorations/maci/blob/14e89baea1ede9bc9bad79fafb5c362d6a6a81e9/contracts/contracts/trees/LazyIMT.sol#L156
https://github.com/privacy-scaling-explorations/maci/blob/ad04340972f3d35a8d4915227d15c5502af7fe63/circuits/circom/utils/messageToCommand.circom#L48-L52
https://github.com/privacy-scaling-explorations/maci/blob/ad04340972f3d35a8d4915227d15c5502af7fe63/circuits/circom/utils/messageToCommand.circom#L48-L52
https://github.com/privacy-scaling-explorations/maci/blob/ad04340972f3d35a8d4915227d15c5502af7fe63/circuits/circom/utils/messageToCommand.circom#L48-L52
https://github.com/privacy-scaling-explorations/maci/blob/ad04340972f3d35a8d4915227d15c5502af7fe63/contracts/contracts/Tally.sol#L257
https://github.com/privacy-scaling-explorations/maci/blob/ad04340972f3d35a8d4915227d15c5502af7fe63/contracts/contracts/Tally.sol#L257
https://github.com/privacy-scaling-explorations/maci/blob/ad04340972f3d35a8d4915227d15c5502af7fe63/contracts/contracts/Tally.sol#L257

Vulnerability Classifications

Severity Categories

Severity Description

Recommendation Information not relevant to security, but may be helpful for efficiency,
costs, etc.

Warning The issue does not pose an immediate security threat, but may be a lack
of following best practices or more easily lead to the future introductions
of bugs.

Minor The code does not work as intended. Impact to the system and users is
minimal if present at all.

Major The issue can lead to moderate financial, reputation, availability, or
privacy damage. Or the issue can lead to substantial damage under
extreme and unlikely circumstances.

Critical The issue can lead to substantial financial, reputation, availability, or
privacy damage.

